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Abstract. Recent studies of the dynamic theory of liquids have been much influenced by Mori’s
formulation of the generalized Langevin equation. An essential component of this formalism
is the memory function. For realistic models like a Lennard-Jones liquid it is too difficult
to calculate the memory function. Recent approaches have been to propose various forms
for it including the hyperbolic secant. In perhaps the most serious attempt yet, Tankeshwar and
Pathak have been said to derive hyperbolic secant memory directly from the generalized Langevin
equation. Here the validity and justification of this work is closely examined. Other approximate
studies which have yielded hyperbolic secant memory are also examined and comparisons are
made.

1. Introduction

Studies of the dynamic theory of liquids during the past two decades have been much
influenced by Mori’s formulation of the generalized Langevin equation (GLE) [1]. An
essential component of the GLE is the memory function. If it is known, the GLE allows
one to obtain the relaxation function, e.g. the single-particle velocity autocorrelation, from
which transport properties like the diffusion constant can follow. Although there is a formal
prescription for calculating the memory function itself from first principles, for models like
a Lennard-Jones (LJ) liquid it is prohibitively difficult. Many have thus proposed various
forms for it including hyperbolic secant, most of which have little physical justification.
Sech memory has drawn the attention of several workers in this field and beyond as it has
some attractive features [2–5]. It would be of great interest if one could even approximately
demonstrate its existence in a model.

In perhaps the most serious attempt yet, Tankeshwar and Pathak (TP) [6], using two
significant approximations, have recently been said to derive sech memory from the GLE
directly. It is an approach quite the opposite of the usual. If their approximations are
valid, one could say that sech memory does exist—if approximately—in a model where
they are justified. TP’s approximations, however, do not refer to any specific model and
appear general, although intended for a LJ liquid, on which they have contributed several
articles [4].

What is remarkable is that sech memory is an exact solution of the GLE for a certain
class of models [5, 7]. That is, it cannot be a general solution but only a particular solution
of limited applicability. It is thus natural to examine TP’s method of solution closely,
especially their two great approximations, to see what they might imply.

TP reduce an already approximated version of the GLE via another approximation
termed anansatz(to be referred to as TP’sansatz). This results in sech memory. This
ansatzalso yields a constraint in the form of a ‘universal’ constant, which is roughly realized
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in a LJ liquid. TP take it to mean that theiransatzis justified and sech memory exists in
this liquid.

There are two issues at hand. Firstly, TP’sansatzas noted isnot applied to the GLE.
Hence, it is necessary to know first the validity of their first approximation by which the
GLE is changed. Secondly, there is a question of uniqueness of TP’s method, and also
a question of sufficiency of TP’s constraint, in letting sech memory be attributed to a LJ
liquid without reservation. The purpose of this work is to address these issues. In addition,
we shall examine other derivations of sech memory and related ones to see their validity
and limitations. We will attempt to find connections between these efforts and TP’s work.

2. Sech memory

According to Mori [8], the time evolution of the dynamical variableA (e.g. the velocity of
a single particle in a liquid) may be regarded as a vector in ad-dimension Hilbert space
S. Let Mk+1(t) be the memory function in thek-subspace ofS, with Mk(0) = 1k > 0 if
0 6 k 6 d − 1, 10 ≡ 1 and1d ≡ 0. The scalar version of the GLE in thek-subspaceSk is

ṁk(t) + 1k+1

∫ t

0
mk+1(t − t ′)mk(t

′) dt ′ = 0 0 6 k 6 d − 1 (1)

wheremk(t) = Mk(t)/1k and m0(t) = (A(t), A)/(A, A), where the inner product means
the Kubo scalar product. It will be insightful to work with a general case as given above. It
indicates the existence of a hierarchy of the memory functions,m1, m2, . . . , md−1, each of
which refers to the time evolution in each subspaceSk, 0 6 k 6 d − 1, andS0 ≡ S.
The subspaceSk has d − k dimensions, and the structure is denoted by1p, p > k.
There is less information contained in it than in any one of its superspaces. Since
A(t) = exp(iHt)A exp(−iHt), h̄ = 1, whereH is a model’s Hamiltonian, the structure
of Sk is realized through the dimensionalityd and the recurrants1ks by a model.

It is clear that ifd → ∞, equation (1) cannot be solved without input from a model
since there are two unknown functions for every equation. Ifd < ∞, it can be solved and
there are only periodic solutions. These solutions are excluded by TP, meaning that theirs
is for d = ∞.

Following TP [6], we can transform (1) into another equation, now involvingmk and
mk+2, as follows. By differentiating (1) once and using (1) once more therein, noting that
mk(t) = 0 if t < 0, we can obtain

m̈k(t) + 1k+1mk(t) + 1k+2

∫ t

0
mk+2(t − t ′)ṁk(t

′) dt ′ = 0 0 6 k 6 d − 1. (2)

This is still exact, just like (1), although no more solvable independently ofH if d → ∞.
It does have certain advantages since it introduces two constants explicitly. For example,
if 1k+2 = 0 but 1k+1 6= 0, i.e. k = d − 2, thenmk(t) = cosat , a2 = 1k+1. If t → 0, to
order t2 one cannot distinguish it from, e.g., exp(−a2t2/2) or sechat . Also, equation (2)
relates time evolution in the subspaces of even or odd dimensions—not mixed as in (1). If
k = 1, we recover TP’s form. Our derivation of (2) is direct. It is not necessary to use
Laplace transforms.

TP [6] propose to solve (2) whend → ∞ but without reference toH by introducing
an approximation and anansatz. First, for the integral term of (2), they let∫ t

0
mk+2(t − t ′)ṁk(t

′) dt ′ = mk+2(t)

∫ t

0
ṁk(t) dt (3)
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to be referred to as TP’s approximation. It is as ift � t ′ in mk+2 in the lhs of (3)—as ift
andt ′ have macro- and microscopic time-scales, respectively. The validity and implications
of this approximation will be discussed later. By use of (3) in (2), it follows that

m̈k(t) + 1k+1Q(t)mk(t) = 0 (4a)

where

Q(t) = 1 − x(mk+2(t)/mk(t))(1 − mk(t)) x ≡ 1k+2/1k+1. (4b)

This is now purely a differential equation, but still with two unknown functions, and hence
not solvable.

To overcome the inherent difficulty, due to the hierarchic nature of the memory functions
of an∞-dimensional Hilbert space, TP propose anansatz. If generalized, it corresponds to

mk+2(t) = 2x−1mk(t)(1 + mk(t)). (5)

The above is, we believe, the simplest generalization of TP’sansatzin the k-subspace,
recovering theirs ifk = 1. The significance of TP’sansatzand our generalized form will
also be discussed later. Now eliminatingmk+2 in (4b) by using (5), we obtain

m̈k(t) + 1k+1(2m2
k(t) − 1)mk(t) = 0. (6)

The above now contains only one constant, the other being constrained by (5). As shown
by TP, the above is solved by

mk(t) = sechat a2 = 1k+1. (7)

This solution recalls a similar one due to Balucaniet al [9]. But is it really a solution
of (1), if approximately? If so, how approximately? Ift = 0 in (5),

x = 1k+2/1k+1 = 4 (8)

to be referred to as TP’s constraint. This must be independent of any physical parameters
(e.g. temperature, at least explicitly), a pure number. Now settingk = 1 (to follow TP’s
argument), we see that TP’sansatzimplies x(k = 1) = 13/12, requiring the ratio of these
two recurrants be 4. If this constant is realized in a model, TP argue that theiransatzis
justified for that model. They further argue that for that model sech memory is a valid
solution of (1).

Even if TP’s constraint is realized, this kind of justification is clearly questionable being
dependent on two independent steps. Nevertheless, TP adduce values for13/12 in a LJ
liquid. If sech memory is an exact solution of (1) in thek = 1 subspace, there exist as
we shall see in the next section some other special constants. Are they—or at least some
of them—also realized in the same liquid in the same manner? It would seem that sech
memory cannot be attributed to a LJ liquid without additional evidence provided by them.

3. LJ liquids and sech memory

We have shown previously that in thek-subspace,mk(t) = sechat, a2 = 1k+1, is an exact
solution of (1) ford → ∞ if

1p+1 = (p − k + 1)2 p > k (9)

in some dimensionless units [7]. Ifk = 1, we obtain13/12 = 4, which corresponds to
TP’s constraint in thek-subspace. But there are also14/12 = 9, 15/12 = 16, etc, which
togetherform the signature of sech memory in that(k = 1)-subspace. One or two such
constants are insufficient to denote sech memory.
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Table 1. 1k/12 versusT , k = 3, 4 and 5, reproduced from [10], table 1.T is the reduced
temperature. For high temperatures,13/12 ≈ 3.7, 14/12 ≈ 38, 15/12 ≈ 118 (also
14/13 ≈ 10.2, 15/14 ≈ 3.1).

T 13/12 14/12 15/12

1 0.72 3.184 19.92 433.7
2 0.77 3.374 16.98 344.7
3 1.10 3.261 11.01 167.3
4 1.43 3.306 9.06 94.40
5 1.45 3.319 9.21 91.24
6 1.57 3.284 8.83 75.96

7 4.66 3.703 35.19 127.8
8 4.76 3.698 40.73 116.4
9 5.02 3.667 37.61 122.3
10 5.08 3.619 32.95 126.6
11 5.12 3.712 43.39 107.9
12 5.26 3.686 40.09 108.7

TP have sought this first constant13/12 = 4 in a LJ liquid, in particular in the work
of Lee and Chung [10] who have obtained several1s for this liquid. In that work values
of 12 − 15 are given as a function of the reduced density in the range 0.30–0.85 and as
a function of the reduced temperature in the range 0.7–5.3. These calculated1s do not
appear to be sensitive to the density, at least in this range. Hence, we have arranged them
according to the temperature (ignoring the density altogether) as shown in table 1. Observe
that they divide into roughly two groups—those of low and high temperatures (rows 1–6 and
rows 7–12, respectively). The third column shows13/12. Their values range from 3.18 to
3.71 as stated by TP, indicating a strong temperature dependence. At low temperatures the
average value for13/12 is approximately 3.28 and at high temperatures it is 3.68. Clearly
TP’s constraint is close only to the high-temperature values.

Although TP’s theory allows no explicit temperature dependence in their constraint,
let us assume that it is applicable at least to high temperatures and see whether the other
constants are as close to the corresponding sech values. The fourth and fifth columns show
14/12 and15/12. For the high-temperature group, their average values are approximately
38 and 118, which are far from the sech values of 9 and 16, respectively. Observe also that
at these high temperatures,14/13 ≈ 10.2 and15/14 ≈ 3.1, both departing considerably
from TP’s ansatzwhich would require them all to be 4. On the basis of this simple
comparison, it is difficult to say that one is seeing sech memory in a LJ liquid even at high
temperatures. We shall show below that the occurrence of13/12 ≈ 4 is not uncommon.
It alone does not necessarily signify sech memory.

In the literature on the GLE [5, 11, 12], there are a number of models for which1s, also
known as recurrants, have been accurately calculated. Although for some of them,13/12

(or equivalently12/11) is close to 4, hardly anyone has taken it seriously to signify sech
memory (or sech relaxation). We shall first quote a few examples from other LJ models.
Tognetti and co-workers [13–15] have extensively studied a LJ chain, and also a Toda chain,
in which a wavevector-dependent single-particle displacement is the dynamical variable. For
the LJ chain, at a wavevectork = π and at the reduced densityρ = 0.890, 13/12 shows
a strong temperature dependence: 3.965 (T = 0.1), 2.552 (T = 0.2), 2.236 (T = 0.3),
etc. HereT is the reduced temperature. For the Toda chain, at the zone boundary and at
the reducedT = 1.0, 13/12 shows a dependence on ‘quantum coupling’: 3.227 (g = 0),
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3.295 (g = 0.4), 3.423 (g = 1). Hereg = 0 indicates the classical regime. In both cases
the values for13/12 all lie in the range of the classical LJ liquid values. It would be no
more justified to conclude that sech memory is operative in them than in a LJ liquid.

For the magnetic models the picture is much clearer since many more recurrants are
accurately known [5]. For example, for the transverse Ising chain atT = ∞ [16], in
which a single spin is the dynamical variable, the following is known:{1p/11} = 4, 7,
10.285, 12.0476, 16.660, etc, wherep = 2, 3, . . .. These recurrants depart rapidly from the
signature of sech relaxation. For the classicalXX-chain [17, 18], 18 recurrants are known:
2, 6.840, 10.190, 16.165, 26.4495, 30.6636, etc. Although they do not initially suggest sech
relaxation, higher ones actually do approach it approximately.

These examples further illustrate the great difficulty in extracting the form for the
relaxation or memory function even from a relatively large set of recurrants. Unless their
behaviour is ‘regular’, attempts based on a small set of recurrants are hazardous especially
for long times [12].

4. The GLE and TP’s approximation

As a first step in their method, TP introduce an approximation (TP’s approximation) to (1).
We shall examine below its validity. In particular, we shall want to see whether it preserves
certain essential properties of the equation of motion.

The GLE is formally solved via an orthogonal expansion by regardingA(t) as a vector
in a d-dimensional Hilbert spaceS [19]:

A(t) =
d−1∑
k=0

ak(t)fk (10)

where thefks form a complete set of basis vectors spanning the spaceS, i.e. (fk, fk′) = 0
if k′ 6= k, and theaks are projection coefficients, e.g.a0(t) = (A(t), A)/(A, A) = m0(t).

Given thatA(t) is a solution of the GLE, the orthogonality of these basis vectors implies
that theaks are themselves linearly independent at anyt . The converse is also true. An
admissible solution for the GLE has this fundamental structural property. That is, throughout
the time evolution,A(t) must remain in the spaceS if it is to be an admissible solution.

In this formalism,F(t), the random force onA(t), is also a vector but inS1, a subspace
of S, i.e. (F (t), A) = 0, t > 0. Hence,

F(t) ≡ A1(t) =
d−1∑
k=1

bk(t)fk

where b1(t) = m1(t). Since A(t) and F(t) are two different physical quantities, it is
necessary thatbk 6∼ ak. With respect to the time evolution ofA1 taking place in the
subspaceS1, there is a random force on it also, sayA2(t). It is a vector inS2, a subspace
of S1. It follows that

A2(t) =
d−1∑
k=2

ck(t)fk

where, e.g.,c2(t) = m2(t) andck 6∼ bk 6∼ ak. One can continue this process of construction
indefinitely if d is infinitely large. To be admissible, these vectorsA1, A2, . . . must also
remain within their own spacesS1, S2, . . . throughout the time evolution. The hierarchic
nature of the memory functions derives from the structural relationship of these subspaces.
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We can now see whether these vectors remain in the same spaces during the course of
time evolution if TP’s approximation is applied. The projection coefficients are related by
a convolution [19]:

ak(t) =
∫ t

0
bk(t

′)a0(t − t ′) dt ′ k > 1. (11)

If TP’s approximation (3) is imposed ona0(t − t ′) under the integral sign above, equation
(11) becomes

ak(t) =
(∫ t→∞

0
bk(t

′) dt ′
)

a0(t) = Bka0(t) k > 1 (12)

whereBk is a constant. The upper limit in (12) may be made to grow sincet � t ′ is implied
by TP’s approximation. According to (12), theaks are now not linearly independent. That
is, thefks (k > 0) are not orthogonal vectors spanning the spaceS. (If TP’s approximation
were made onbk in (11), we would obtain the non-allowedbk ∼ ak.)

The same is true in every subspace. For example,bk ∼ b1, under TP’s approximation.
Hence, thefks (k > 1) are not orthogonal vectors spanningS1. One can thus conclude that
the GLE under TP’s approximation produces solutionsA(t), A1(t), . . . which do not remain
in the original Hilbert spacesS, S1, . . . as the time evolves. It was this argument which was
used to rule out exponential decay for the relaxation function [20].

TP argue that their approximation can be used in higher memory functions, i.e. in
higher subspaces, apparently to justify its use onm3, but not onm1 or m2. But because the
memory functions are all hierarchically linked (see (1)), the approximation is transmitted to
the lower ones—tom2, thenm1 and finally tom0. It cannot be contained in one subspace
alone. To see this, let us introduce TP’s approximation in the subspaceSk, k > 1. Then
the basis vectors for this subspacefk, fk+1, . . . are no longer mutually orthogonal as shown
above. Now the superspaceSk−1 is spanned byfk−1, fk, fk+1, . . . . Sincefk andfk+1 are
also basis vectors inSk, (fk+1, fk) 6= 0. Given the general property(ḟk, fk) = 0 and the
recurrence relation [19]fk+1 = ḟk + 1kfk−1, we are led to(fk, fk−1) 6= 0. One can then
show that(fk−1, fk−2) 6= 0 and by continuation no basis vectors in all other superspaces are
orthogonal, which contradicts (10). TP’s approximation is simply not a valid approximation
for the GLE in any subspace.

Let us now turn to TP’sansatz, borrowed from the mode-coupling theory of critical
phenomena. Near its critical point, a liquid behaves anomalously owing to the existence of
dominant large-scale modes. Here mode coupling can be a significant factor in the dynamic
critical behaviour of the liquid. But far from the critical point—the domain of our present
interest—it is difficult to envisage that mode coupling is as significant.

For critical dynamics G̈otze introduced anansatz[21] which if generalized to thek-
subspace has the following form:

mk+2(t) = amk(t)(1 + bmk(t)) (13)

wherea and b are some coupling constants. The above form is at best only heuristically
understood in terms of the two undetermined constants. TP adopt (13) unchanged but only
at the special valuesa = 2x−1 and b = 1 for their ansatz. We have shown in appendix
A that if slightly different sets of values are used, one can obtain quite different memory
functions from (4a). Thus, even on the grounds of critical dynamics, it is no simple matter
to find justification for TP’sansatz. As already shown in section 3, TP’sex post facto
justification in a normal LJ liquid falls short of the mark.

It does seem curious that an approximated equation of motion, together with thisansatz,
should yield sech memory, an admissible solution of the exact equation of motion. We will
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show in appendix A that anotheransatz—but not based on the mode-coupling theory—can
yield the same sech memory. Hence, if it is merely to produce sech memory, TP’sansatz
holds no special place.

5. Discussion

TP’s approximation places their solution forA(t) outside of its original Hilbert space. As
a result, its random forceF(t) need not even be orthogonal toA(t = 0). Their ansatzhas
had the fortuitous effect of restoring the solution to its original space (see appendix B). This
kind of approach is evidently spurious. We have also shown (see appendix A) that their
way of obtaining sech memory is not unique. In addition, by extension we have obtained
other solutions for the memory, all of which are devoid of physical significance since the
ansatzapplied is arbitrary.

TP pin the justification of theiransatzon finding their constraintx(k = 1) = 13/12 = 4
in a LJ liquid. We have shown that there are other constants in the same liquid which do not
support sech memory at all. One might perhaps argue that since TP’s method is inexact, the
signature of sech memory, which is an exact solution of (1), should not apply. An alternative
derived from (5) offers no relief. Here TP’s constraint implies that1p+1 = 4p, p > k in
the k-subspace. Settingk = 1, we find that14/12 and 15/12 lend no more support to
TP’s cause. Actually it is known that if1p+1 = yp, |y| > 1, p > 1, equation (1) does not
have a solution [22, 23].

One might still argue that TP’sansatzis intended strictly for the(k = 1)-subspace
only. As such, only the constraintx(k = 1) = 13/12 = 4 is meaningful; TP contend
that it is close to the LJ liquid values 3.18–3.71. We have shown that this constraint is
recoverable from the recurrants for sech memory in the(k = 1)-subspace (see equation
(9)). We have also shown that under anotheransatz(A8), we can obtain a new constraint,
x = 3, and a new memory function, the hyperbolic secant squared. The new constraint
x(k = 1) = 13/12 = 3 is just as exactly recoverable from1p+1 = p(p + 1), p > k = 1,
the recurrants for this new memory function in the(k = 1)-subspace [7]. Also it is close
to the LJ liquid values. In fact, it is closer at low temperatures than TP’s while less so at
higher temperatures. Thus, even if restricted just to the constraint alone, a LJ liquid offers
no unambiguous support for TP’sansatznor—by their logic—sech memory in this liquid.
Anotheransatzand another memory function would do just as well.

Others have mishandled the GLE or its equivalent, the Heisenberg equation of motion,
to produce e.g. Lorentzian dynamic structure factors in Hermitian models [24]. In these
instances the errors are traceable to mixing up Hilbert spaces as TP did [25, 26]. Via
approximations like TP’s, the GLE can be reduced to the much studied Langevin equation.
As is well known, the solutions are exponentially damped functions [27]. They are of course
inadmissible for the GLE [20].

There are correct ways to solve the GLE approximately. We shall illustrate a simple
example in hydrodynamics, one due to Tsekov and Radoev [28, 29] (the TR model). As
an approximation, letmk+1(t) = mk(t) ≡ m(t) in (1), i.e.1k = 1, k > 0. We then obtain
one of the simplest admissible solutions for (1):m(t) = 2J1(t)/t , whereJ1 is the Bessel
function and1 = 1/4 for simplicity. Although an exactly realizable solution, it is still
useful for showing a correct way of approximating (1).

To solve (1) approximately but correctly, it is necessary to ensure that the conditions
like mk(t = 0) = 1, ṁk(t = 0) = 0 are unaffected by the approximation. The TR model
does so, being an exact solution. In standard classical approximations, one is already in the
regime wheret � t0, t0 > 0, so the behaviour at small times is often overlooked [27].
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In appendix B we illustrate another method due to Balucaniet al [9]. By this
approximation method, a variety of admissible solutions are obtained including TP’s
solution. It is thus possible to obtain sech memory properly if approximately. But these
approximate solutions are not driven by the structure of the recurrants1k. Hence one
cannot connect them to any models.

We have already demonstrated that given (9), sech memory is an exact solution of the
GLE. Hence, equation (9) uniquely implies sech memory. The possible existence of sech
memory is interesting—but still more interesting is in what model it might exist. This point
has been addressed already [7].
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Appendix A. The ansatze, sech memory, etc

In this appendix we shall show that sech memory can be derived perhaps more simply via
anotheransatztogether with TP’s approximation. If (1) is differentiated once,

m̈k(t) + 1k+1mk+1(t) + 1k+1

∫ t

0
mk+1(t − t ′)ṁk(t

′) dt ′ = 0 k > 0. (A1)

If TP’s approximation is applied tomk+1 under the integral sign above, we obtain

m̈k(t) + 1k+1mk+1(t)mk(t) = 0 (A2)

which involves one constant. Although much simpler than equation (4a), it is still not
solvable since there are still two unknown functions in it. Following TP, we consider an
ansatz

mk+1(t) = 2m2
k(t) − 1 (A3)

evidently unrelated to (5). The substitution formk+1 in (A2) of (A3) yields

m̈k(t) + 1k+1(2m2
k(t) − 1)mk(t) = 0 (A4)

which is exactly the same as equation (6). Hence, we recover

mk(t) = sechαt α2 = 1k+1. (A5)

Equation (A1) can be expressed slightly differently, such that in the second and third
termsmk(t) andmk+1(t) are exchanged. Then, TP’s approximation used formk, not mk+1

as above, still leads identically to (A2). It is immaterial whether TP’s approximation is
applied to a higher or lower memory function. Ouransatz(A3) does not give rise to a
constraint involving1ks in the manner of TP since there is only one constant in (A2).
However, self-consistency between (A3) and (A5) implies that our generalized form (8) is
a possibility.

Now if, instead of (A3), one takes theansatz

mk+1(t) = 3mk(t) − 2 (A6)
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equation (A2) yields another admissible solution:

mk(t) = sech2 βt β2 = 1k+1/2. (A7)

This form of theansatzcan be generalized to obtainmk(t) = sechn νt , ν2 = 1k+1/n,
n = 1, 2, . . . .

Theseansatz-driven solutions for (A2) suggest that something similar should also be
found for (4a), TP’s equation. To explore this possibility, instead of TP’sansatz(5), let

mk+2(t) = 3x−1mk(t) x = 1k+2/1k+1 (A8)

i.e. a = 3x−1, b = 0 in (13). Then, equation (4a) becomes

m̈k(t) + 1k+1(3mk(t) − 2)mk(t) = 0. (A9)

Thus, equation (A9) is also solved by (A7). (One can have a similar generalization.) In
this case, theansatz(A8) implies thatx = 3.

If in (5) we now let

mk+2(t) = x−1mk(t)(1 + mk(t)) (A10)

(i.e. a = x−1, b = 1 in (13)), which differs from TP’sansatzonly in the numerical prefactor
2 → 1, then (4a) becomes

m̈k(t) + 1k+1m
3
k(t) = 0. (A11)

Equation (A10) implies a new constraint:x = 2. The solution for (A11) is a Jacobi elliptic
function [30]. Finally, to obtain an equation for the constraintx = 1 (i.e. 1k = 1, k > 1),
it is sufficient to let

mk+2(t) = mk(t) (A12)

i.e. a = x−1 = 1, b = 0 in (13). Then (4a) becomes

m̈k(t) + 1m2
k(t) = 0. (A13)

The solution is a Weierstrass elliptic function [30].
Observe that the three new forms of theansatz(equations (A8), (A10), and (A12)) all

derive from a common origin in the mode-coupling theory of critical dynamics, just like
TP’s. They merely assume different special values of the coupling constants such as to
allow the constraintx to range from 1 to 4. TP’sansatzand (A10) are very similar, yet
their constraints and solutions are very dissimilar. TP’sansatzand (A8) are more dissimilar,
yet their constraints and solutions are more similar.

These examples show that solutions for (4a) are highly sensitive not only to the forms
but also to even minor details of theansatz. In appendix B, the role of theansatzin yielding
admissible solutions is discussed.

Finally, equation (A12) implies the TR model. See section 5. The solution for (1)
for the TR model is a Bessel function, which is very different from a Weierstrass elliptic
function, the solution for (A13). As these two different solutions indicate, the same Hilbert
space structure (e.g.1k = 1, k > 1) yields unrelated solutions depending on whether
the equation of motion is exact or reduced. One must therefore be very careful not to
attribute the solutions of some reduced equations to the exact equation without additional
justifications.
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Appendix B. The method of Balucani, Tognetti and Vallauri

Some years ago, Balucani, Tognetti and Vallauri [9] (BTV) gave an interesting
approximation method of solution for the GLE. This important work appears not to have
received due attention. Unlike TP’s, this method is valid if handled properly. In the
following we shall simplify it somewhat and obtain a variety of approximate solutions
including TP’s. This method also lends insight into TP’sansatz.

Tokuyama and Mori [31] showed that (1) can also be expressed as

ṁk(t) + 1k+1φk+1(t)mk(t) = 0 (B1)

whereφk+1 is some unknown modulated function. It must depend on1p, p > k + 2, but
not on1p, p 6 k+1. According to the recurrence relations formalismφ1(t) = a1(t)/a0(t).
Since this function is unknown, equation (B1) is no more solvable without input from
models than equation (1). However, it admits a formal solution:

mk(t) = exp

{
−1k+1

∫ t

0
φ(t) dt

}
(B2)

in terms of the unknown functionφ (subscript suppressed). Recall thatmk(0) = 1. Equation
(B2) is also suitable for obtaining approximate solutions.

Sinceṁk(t) is an odd function oft , according to (B1)φ(t) must also be an odd function.
Also sinceṁk(t = 0) = 0, so tooφ(t = 0) = 0. Approximate admissible solutions for
mk(t) can be generated by choosing aφ(t) which has these properties. They are, however,
necessary, not sufficient, so care must be exercised. For example, an admissible solution
must also be bounded at all times.

We shall first consider a few simple examples to illustrate the method of BTV, all but
one of which result in admissible solutions.

Example 1:

φ(t) = t mk(t) = exp(−at2) a = 1k+1/2.

Example 2:

φ(t) = tanhat/a mk(t) = sechn at a2 = 1k+1/n n = 1, 2, . . ..

Example 3:

φ(t) = t/(1 + at2) mk(t) = (1 + at2)−n/2 a = 1k+1/n n = 1, 2, . . ..

Example 4:

φ(t) = sinat

a(1 + cosat)
mk(t) = 2n(1 − cosat)−n

a2 = 1k+1/n n = 1, 2, . . ..

Observe that in example 2, then = 1 case corresponds to TP’s solution [6], and
the n = 2 case corresponds to BTV’s solution [9]. The solution in example 4 is not
bounded at all times. Example 1 is an exact solution of (1), and also of (B1), in thek-
subspaceSk if 1p = (p − k), p > k + 1 [7]. Similarly, example 2 is an exact solution if
1p = (p − k)(p − k + n − 1), p > k + 1 andn > 1.

If (B1) is differentiated once,

m̈k(t) + 1k+1µ(t)mk(t) = 0 (B3)
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where

µ(t) = φ̇(t) − 1k+1φ
2(t). (B4)

From the properties ofφ, µ(t) is an even function oft and µ(t = 0) = 1. They are in
turn some of the necessary requirements onµ(t) for (B3) to yield admissible solutions.
Equation (B3) has a similar structure to (4a) and (A2). Hence, one can understand how
these ‘improper’ equations can be made to yield admissible solutions by means of anansatz.
A comparison of (A2) and (B3) shows thatmk+1(t) in (A2) plays the role ofµ(t) in (B3).
Hence, if by anansatzit is made to have the required properties ofµ(t), equation (A2)
can yield admissible solutions. The two choices, equations (A3) and (A6), are those which
belong to this class. Similarly,Q(t) (see equation (4b)) plays the role ofµ(t). TP’s ansatz
(5) or ours (equation (A8)), i.e.xmk+2/mk = 2(1 + mk) or 3, endowsQ(t) with some of
the necessary properties ofµ(t). In these instances, theansatzacts to restore the Hilbert
space which had been deformed by the approximation. This is merely fortuitous since such
a restoration need not take place.
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